クワッドツリーとは何ですか?
クアッドツリー(クアッドツリー、QツリーまたはQT)は、4つの象限にデータを整理する方法を指すコンピューターサイエンスの用語です。 データベースでは、四分木を使用してレコードを保存および検索することがあります。 このタイプの組織構造は、2次元画像で特定のビットまたはピクセルを見つけるのに特に役立ちます。
クワッドツリーは、コンピューターサイエンスで一般的に使用されるツリーデータ構造に従います。 通常のツリーデータ構造は、逆さまのツリーのように見えます。ツリーの最上部の親ノードには、1つ以上の子ノードが接続されています。 ツリー上の他のすべてのノードには1つの親ノードがあり、ゼロを含む任意の数の子ノードを持つことができます。
通常のツリーデータ構造とは異なり、クアッドツリー構造では、各内部ノードに正確に4つの子ノードが必要です。 ほとんどのクワッドツリー構造を示すと、4つの子ノードがぶら下がっているノードが表示され、親ノードとその子ノードを結ぶ線が表示されます。 図を続行して、元の4つの子ノードのそれぞれからさらに4つの子ノードをぶら下げてください。
それ以外の場合、四分木のイラストは領域または正方形になります。 領域がデータを格納するための最大容量に達するたびに、4つの象限に分割されます。 通常、領域や象限は正方形ですが、長方形やその他の形状にすることもできます。
クワッドツリーは、写真のピクセルを整理したり、コンピューターグラフィックスを整理したりするのに適したデータ構造です。 画像は象限に分割でき、各象限はさらに4つに分割できます。 これは、個々のピクセルのレベルに達するまで何度も繰り返すことができます。 ただし、象限にすべて同じ色のピクセルが含まれている場合、象限をさらに分割する理由はありません。
クワッドツリー構造に格納されたデータは、コンピューターグラフィックスのデータを整理する他の方法と比較して、多くのストレージスペースを必要としますが、クワッドツリー構造にはいくつかの利点があります。 最初に、ルートノードをクリアすると、そのすべての子ノードもクリアすることで、写真またはグラフィック全体を1ステップで削除できます。 第二に、子ノードの最終レベルをクリアするだけで、写真の解像度をすばやく下げることができます。 これにより、必要なストレージ容量が削減されます。 最後に、画像操作のために写真の特定の領域を見つけることは、四分木構造の方が簡単です。
クアッドツリーは、空間インデックスを含む他のいくつかの状況でも使用されます。 クワッドツリーは2次元画像に制限されていますが、3次元画像を表す場合は、八分木と呼ばれる同様の構造に従うことができます。