¿Qué es el análisis de varianza?
Al investigar, a veces es necesario analizar datos comparando más de dos muestras o grupos. Un tipo de prueba de estadísticas inferenciales, análisis de varianza (ANOVA), permite el examen de varias muestras al mismo tiempo para determinar si existe una relación significativa entre ellas. El razonamiento es idéntico a las pruebas t, solo el análisis de varianza incluye variables independientes de dos o más muestras. Se determinan las diferencias entre las muestras y la diferencia dentro de una muestra. ANOVA se basa en cuatro suposiciones: el nivel de medición, el método de muestreo, la distribución de la población y la homogeneidad de la varianza.
Para determinar si las diferencias son significativas, ANOVA se refiere a las diferencias entre y dentro de las muestras, que se conoce como la varianza. El ANOVA puede averiguar si la varianza es mayor entre las muestras en comparación con la de los miembros de la muestra. Si se encuentra que esto es cierto, entonces elLas diferencias se consideran significativas.
La realización de una prueba ANOVA implica la aceptación de ciertos supuestos. El primero es que se utiliza el método de muestreo aleatorio independiente y la elección de los miembros de la muestra de una sola población no influye en la elección de miembros de poblaciones posteriores. Las variables dependientes se miden principalmente a nivel de relación de intervalos; Sin embargo, es posible aplicar el análisis de varianza a las mediciones de nivel ordinal. Se puede suponer que la población se distribuye normalmente, a pesar de que esto no es verificable, y las variaciones de población son las mismas, lo que significa que las poblaciones son homogéneas.
La hipótesis de la investigación supone que al menos una media es diferente de las otras, pero las diferentes medias no se identifican como más grandes o más pequeñas. Solo se predice el hecho de que existe una diferencia. El ANOVA prueba para la hipótesis nula, wHich significa que no hay diferencia entre todos los valores medios, de modo que a = B = C. Esto requiere establecer el alfa, refiriéndose al nivel de probabilidad donde la hipótesis nula será rechazada.
F-relación es una estadística de prueba utilizada específicamente para el análisis de varianza, ya que la puntuación F muestra dónde comienza el área de rechazo para la hipótesis nula. Desarrollado por el estadístico Ronald Fisher, la fórmula para F es la siguiente: F = entre la estimación de la varianza del grupo (MSB) dividida por la estimación de la varianza del grupo dentro (MSW), de modo que F = MSB/MSW. Cada una de las estimaciones de varianza consta de dos partes: la suma de cuadrados (SSB y SSW) y grados de libertad (DF). Usando las tablas estadísticas para la investigación biológica, agrícola y médica , el alfa puede establecerse y basarse en esto, y la hipótesis nula de ninguna diferencia puede ser rechazada. Se puede concluir que existe una diferencia significativa entre todos los grupos, si ese es el caso.