En matemáticas, ¿qué es el triángulo de Pascal?
El triángulo de Pascal es una matriz triangular de números que se relacionan entre sí de manera interesante y útil desde la perspectiva de las matemáticas. La formación del triángulo es un asunto relativamente sencillo en el que se suman dos números adyacentes para formar un número directamente debajo del triángulo. Esto expande el triángulo a un ritmo regular y crea filas y diagonales de números que pueden analizarse de muchas maneras. La relación entre los números se puede expresar como una fórmula matemática, pero la construcción del triángulo no requiere esta fórmula, aunque las razones por las cuales evolucionan los patrones son mucho más complejas. No solo los números individuales se relacionan entre sí en el triángulo, sino que las sumas de los números y los patrones que forman también tienen aplicaciones interesantes en matemáticas.
La mayoría de las personas en Occidente asocian el triángulo de Pascal con Blaise Pascal debido a su investigación detallada de las propiedades matemáticas de estos números, pero este triángulo y la relación reconocida de estos números son anteriores a Pascal por siglos. En China, Yanghui estudió y describió esta serie, por lo que está más fuertemente asociada con ese matemático. Pascal organizó sus investigaciones sobre este tema en un tratado, creando una evaluación unificada de las muchas complejidades de este triángulo.
La conexión entre el triángulo de Pascal y otros conceptos matemáticos es compleja. Tiene relaciones con los números de Fibonacci, el triángulo de Sierpinski y muchos otros patrones matemáticos establecidos. También tiene varios usos prácticos, como el cálculo de combinaciones. Los matemáticos pueden extender el triángulo de Pascal en números negativos, revelando patrones aún más interesantes.
Algunos de los aspectos más interesantes del triángulo de Pascal incluyen el cálculo de sumas de números a través de filas o diagonales poco profundas. Los patrones de estas sumas se relacionan con varias otras secuencias. A lo largo de las diagonales, los números progresan también en patrones significativos. Muchas interpretaciones del triángulo de Pascal etiquetan el punto del triángulo como cero y la línea con dos números como uno. Dada la forma en que se forma el triángulo, el borde exterior del triángulo es siempre uno.
Hay muchas formas diferentes en que se puede usar el triángulo de Pascal. En clases de matemáticas muy básicas, a menudo se usa para pensar sobre patrones interesantes relacionados con las matemáticas y para alentar a las personas a pensar sobre las relaciones entre los números. Para matemáticos más avanzados, el triángulo presenta una serie de patrones diferentes que pueden ser útiles al pensar en estadísticas y probabilidad. Uno de los ejercicios más comunes que se realizan en las clases básicas de matemáticas usando este triángulo consiste en sombrear los números pares e impares de diferentes colores para señalar los patrones que se forman.