¿Qué son las matemáticas actuariales?
La ciencia actuarial se refiere a la mezcla única de varios campos de estudio diferentes; Tiene el objetivo de proporcionar pautas cuantificables para las decisiones comerciales que involucran la evaluación de riesgos. Las matemáticas requeridas por esta ciencia son una combinación compleja de cálculo, estadísticas, matemáticas financieras y modelado numérico. La matemática actuarial se utiliza para apoyar soluciones a una serie de problemas diferentes en negocios y gobierno.
se requiere cálculo en las matemáticas actuariales porque este tema de las matemáticas se refiere al cambio. Muchos problemas resueltos por los actuarios implican cambios con el tiempo. Los ejemplos son cómo una variable cambia con la edad de la población de estudio o la confiabilidad mecánica cambia con las horas de operación. El cálculo proporciona las funciones para describir los sistemas y los medios para evaluar los límites de esos sistemas. El cálculo integral resume los cambios de una variable con el tiempo, y el cálculo diferencial analiza los cambios por unidad de tiempo.
Las acciones de las personas y sus eventos de vida sonEstudió como parte de las matemáticas actuariales utilizando estadísticas y probabilidad de predecir los resultados futuros. La ciencia de las estadísticas intenta predecir respuestas de comportamientos pasados. Distingue entre eventos aleatorios y no aleatorios e intenta eliminar la aleatoriedad de un sistema para permitir la previsibilidad.
El valor temporal del dinero es la base de muchos problemas de matemáticas financieras. Reconocer que este activo fluctúa en valor a lo largo del tiempo complica el proceso de toma de decisiones. Las matemáticas actuariales no solo abordan escenarios económicos variables, como el aumento o la disminución de las tasas de interés, sino que también debe incorporar las funciones del cálculo en el análisis. Los entornos financieros cambiantes se apilan además de los cambios en la variable principal con el tiempo.
El modelado numérico ofrece cierto alivio en el campo de las matemáticas actuariales. Descomponiendo el problema en subproblemas minuciosos y usandoAproximaciones de valores en los límites de los subproblemas, se pueden usar ecuaciones simples. Estas técnicas aún necesitan modelar el método real por el cual se produce el cambio en la medida posible. A menudo su uso se limita a parte de un problema. El modelado numérico de un mecanismo de la enfermedad puede producir una población de aportes teórica a un algoritmo que luego se resuelve más rigurosamente.
La informática a menudo se estudia como parte del plan de estudios modelo de los actuarios. La complejidad de los problemas intentados o el uso de aproximaciones numéricas generalmente exige que la capacidad de una computadora para calcular las ecuaciones se aplique repetidamente. La ciencia del actuario se mejoró enormemente con el desarrollo de la pequeña computadora.
Muchas industrias se benefician de las matemáticas actuariales. Las tablas de seguro de vida y los riesgos financieros de las inversiones son de uso común. Las evaluaciones de riesgos de los principales proyectos de ingeniería pueden ayudar a evitar los resultados catastróficos financieros y en la vida de las personas que viven cerca del proyecto.Los gobiernos utilizan las matemáticas actuariales para evaluar las probabilidades y efectos de las decisiones de política exterior simuladas. Los juegos de guerra también se pueden usar en la enseñanza de las matemáticas actuariales.