¿Qué es la dinámica analítica?

La dinámica analítica es una formulación moderna de la mecánica clásica; Es la rama de la física que describe los efectos de las fuerzas sobre el movimiento de los objetos físicos. Las teorías de Sir Isaac Newton y el cálculo que desarrolló para formularlas son la base de este campo. Científicos posteriores, como Joseph-Louis Lagrange y William Rowan Hamilton, generalizaron el comportamiento de los sistemas físicos con el uso de matemáticas más avanzadas y descriptivas. Este trabajo fue importante en el estudio de las teorías de campo, como el electromagnetismo, y el posterior desarrollo de la mecánica cuántica.

En la física de Newton, las fuerzas actúan sobre el movimiento de los cuerpos como si los objetos fueran infinitesimalmente pequeños. Los objetos rotativos fueron tratados como rígidos o no deformables debido a su movimiento. Estas suposiciones producen aproximaciones muy precisas del mundo real y son particularmente susceptibles de solución mediante el cálculo de Newton. Matemáticamente, la fuerza se trató como un vector, una cantidad que tiene dirección y magnitud. El objetivo era calcular, dada la posición inicial y la velocidad de un objeto, su posición en algún momento arbitrario en el futuro.

La metodología de dinámica analítica amplía el alcance de la mecánica newtoniana al convertirse en una descripción más abstracta. Su matemática no describe simplemente la posición de los objetos, sino que también puede aplicarse a los sistemas físicos generales. Entre ellas se encuentran las teorías de campo, como las que describen el electromagnetismo y la relatividad general. Cada punto en un campo puede asociarse con, entre otras cosas, un vector o un escalar, una cantidad que solo tiene magnitud y no dirección. En general, la dinámica analítica utiliza dos propiedades escalares, las energías cinética y potencial, para analizar el movimiento en lugar de los vectores.

La mecánica lagrangiana, introducida a fines del siglo XVIII, combinaba la segunda ley de Newton, la conservación del momento, con la primera ley de la termodinámica, la conservación de la energía. Esta formulación de dinámica analítica es poderosa y forma la base de la mayoría de las teorías modernas. Las ecuaciones lagrangianas revelan toda la información relevante sobre un sistema y pueden usarse para describir todo, desde la mecánica newtoniana hasta la relatividad general.

En 1833, se presentó un nuevo refinamiento de la dinámica analítica en forma de mecánica hamiltoniana, que difiere del método lagrangiano en la forma en que describe las propiedades de un sistema. El objetivo no era ofrecer un método más conveniente de resolución de problemas, sino proporcionar una visión más profunda de la naturaleza de los sistemas dinámicos complejos. Con una generalización adicional, las ecuaciones hamiltonianas se hicieron luego aplicables a la descripción de la mecánica cuántica y la clásica. La abstracción necesaria para profundizar la comprensión de la dinámica analítica también ha ampliado el alcance de su investigación en otras áreas de la ciencia.

OTROS IDIOMAS

¿Te ha resultado útil este artículo? Gracias por la respuesta Gracias por la respuesta

¿Cómo podemos ayudar? ¿Cómo podemos ayudar?