Cos'è il triangolo di Floyd?
Il triangolo di Floyd è una serie di numeri che si distribuiscono in sequenza in una serie di righe. Viene utilizzato per insegnare le basi della programmazione informatica. La prima riga contiene 1 da sola, e la seconda riga contiene 2 e 3. La riga successiva contiene 4, 5 e 6, e i numeri continuano in questo modello all'infinito. Ne risulta un triangolo rettangolo, con numeri distanziati ad intervalli regolari.
La forma del triangolo di Floyd non è complicata. La maggior parte del trucco sta nel progettare un programma per generare i numeri in ordine e con la spaziatura corretta, con solo comandi minimi. Istruttori di programmazione informatica che insegnano sia Java che C ++ spesso assegnano agli studenti i problemi del triangolo di Floyd per insegnare i principi di programmazione fondamentali.
Costruire la formula del triangolo implica complesse abilità matematiche e di risoluzione di numeri interi che sono essenziali in grandi progetti di programmazione. Ogni riga progressiva del triangolo si basa sul precedente, ma non è una somma totale. Per generare un programma per computer che costruisca sistematicamente il triangolo fino a una determinata dimensione specificata, gli studenti devono comprendere la matematica dei numeri interi e applicarla al linguaggio di script e al lessico unico della codifica informatica.
La corretta codifica del triangolo di Floyd richiede una padronanza dei loop. Nella codifica C ++ e Java, i loop sono strutture di codice che dipendono da istruzioni o gruppi di istruzioni eseguite più volte. L'istruzione deve contenere un numero intero non definito che viene definito in modo univoco con ciascun ciclo.
Il triangolo di Floyd contiene anche un significato matematico al di fuori del settore della programmazione. Oltre ad essere un triangolo rettangolo perfetto in espansione esponenziale, definisce anche sia i numeri triangolari che i numeri che compongono la "sequenza del ristoratore pigro". Entrambi sono aspetti di polinomi e calcoli geometrici.
I numeri triangolari sono i numeri che risultano quando i numeri sequenziali vengono sommati in serie. Il calcolo inizia con 1, che è il primo numero triangolare. Quindi, 1 + 2 = 3, rendendo 3 il secondo numero triangolare; l'intero calcolo viene quindi aggiunto al numero successivo, generando (1 + 2) + 3 = 6. Da lì, (1 + 2 + 3) + 4 = 10 e così via. Non a caso, i numeri 1, 3, 6 e 10 si trovano sul bordo destro del triangolo di Floyd.
Il bordo sinistro contiene i numeri della sequenza del ristoratore pigro. Quella sequenza descrive il numero massimo di pezzi che possono derivare quando si usano linee rette per dividere in due un cerchio. I pezzi non devono essere uguali, perché le linee non devono passare direttamente attraverso il cerchio centrale. I possibili numeri possono essere generati con la formula (n 2 + n + 2) / 2, che produce un elenco che inizia con 1, 2, 4, 7 e 11 - i numeri all'inizio delle prime cinque righe del triangolo di Floyd .
Gli istruttori di matematica insegnano spesso al triangolo di Floyd insieme al triangolo di Pascal, che è un'altra raccolta di numeri ordinati che fa luce su vari schemi e formule matematiche. Il triangolo di Pascal è un triangolo equilatero costituito dalla costruzione di coefficienti binomiali. Questo triangolo può anche essere codificato nella programmazione per computer, sebbene la programmazione richiesta di solito sia più avanzata della programmazione necessaria per il modello di Floyd.